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Abstract-An integral method is developed to analyze laminar free convection between large aspect ratio, 
vertical, parallel plate channels subject to a uniform. symmetric, heat flux and varying fluid properties. 
The flow is assumed to be fully developed, which is a good assumption for channels with large aspect 
ratios. This is a heat transfer problem characterized by high temperature ratios, thereby rendering the 
commonly applied Boussinesq approximation invalid. The method developed is general and, therefore, 
can be used to calculate natural circulation of gases or liquids. Sample calculations are included for air 

between 300 and II00 K. 

INTRODUCTION 

NATURAL convection flows occur in many areas of 
applied engineering including nuclear reactor cooling 
systems. atmospheric and oceanic circulation and 
electric machinery. The flow is a buoyancy-induced 
motion resulting from body forces acting on density 
gradients which, in turn, arise from temperature 
and/or mass concentration gradients in the fluid. 

The problem of cooling heated, vertical, parallel 
plates by natural convection has drawn considerable 
attention, primarily due to the interest generated 
within the electronics industry. The history of the mod- 
eling of such problems has been a sequence of refine- 
ments and successive approximations [ 11. Elenbaas 
[2], in early measurements, showed that the Nusselt 
number, Nu, is proportional to the channel Rayleigh 
number, Ra. Aung [3] studied the problem of sym- 
metric and asymmetric heating of the plates and 
presented results indicating that the thermal develop- 
ment length is independent of the Prandtl number, Pr. 

This was a surprising result due to its distinction from 
that of forced convection, where it is well known that 
the ratio of the development length for velocity and 
temperature is a function of Pr. Ramanathan and 
Kumar [I] showed later, however, that Aung’s result 
is valid only in the range of aspect ratios where axial 
diffusion (not accounted for in Aung’s model) is no 

longer significant (L/h > 15). At these relatively high 
aspect ratios and corresponding low Ra (Ra < O.l4), 

Aung rt cd. [4], as reported in ref. [I], found that the 
flow may be considered fully developed along most of 
the channel. The experiments of Wirtz and Stutzman 
[5] agree well with the analytical model of Aung. 

The efforts to model natural circulation cited above 
were developed for processes involving small tem- 
perature differences or low temperature ratios, r,, 
where r, is defined as the ratio of the channel outlet 

mean fluid temperature to the channel average fluid 
temperature. With a low TR, the process is amenable 
to the simplifying Boussinesq approximation, which 
is commonly understood [6] to consist of the assump- 
tions that (a) the fluid properties are constant except 

density in the momentum equation when it directly 
causes buoyant forces, and (b) viscous dissipation is 
negligible. There exits a class of problems, however, 
where heat transfer rates are high enough to render 
the first of these assumptions invalid. These problems 
are characterized by a high T,, for example, heat 
transfer along nuclear fuel plates of test reactors [7]. 
Although the effects of variable properties have been 
studied for different geometries (see refs. [8, 9]), no 
methods were found for resolving this non-Boussinesq 
problem for vertical channel geometries. Therefore, 
an analytical investigation was conducted to study 
this variable fluid property heat transfer problem. The 
results obtained are the subject of this paper. 

PROBLEM STATEMENT 

The approach is to model the system using the 
integral boundary layer equations. The flow is 
assumed to be fully developed, laminar flow. Aung 
et al. [4] showed that neglecting the thermal and 
hydrodynamic entry lengths produced reasonable 
results for Ra < 100. Miyamoto et al. [IO] showed 
that characterizing the flow as laminar flow is valid 
for Pr Gr, ,< IO’O ‘I. These limits are implied in this 
application. 

Since the velocity along the channel will vary in- 
versely with the density as heat is added, the char- 
acterization of fully developed flow is, therefore, 
conveyed in the same sense as a fully-developed 
temperature profile in the case of constant fluid prop- 
erties. That is, only the ratio of the local velocity to 
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NOMENCLATURE 

h gap between plates 

(‘1, specific heat 
Fr, Froude number, V,,‘(gl;) 

.rf gravitational constant 
Gr, Grashof number. g/Iy”L”j(r%) 

k fluid thermal conductivity 
I gap half width, h/2 
Gr Grashof number, ~/jy”h“/(~%) 

L length of plate 
Nu Nusselt number 
p. fi pressure, pressure estimate 

Pr Prandtl number, v/a 
q” heat flux 
R channel aspect ratio, Ljh 
Rrl Raylcigh number, PI Gr (h/L) 
RP~ Reynolds number, V L/Y 

s ratio of channel Icngth to unit depth, L 
T temperature 
If mean fluid velocity 

II .y-direction velocity 
S,J’ Cart&in coordinates. 

Greek symbols 
X fluid thermal diffusivity 

P coefficient of thermal expansion 
i: numerical error limit 

‘7 ri/ 

CT (7, - ~)~~“(~~~) 

A equation (24) 

V fluid dynamic viscosity 
I’ fluid kinematic viscosity 

P fluid density 
0 (1 /,l) (~jC/cT) 

wall shear stress 
; equation (23) 

II; 1 +4T,,- T,,,) 
(3 1 -t2fl(jT-T,,,). 

Subscripts and superscripts 
B Boussincsq 
L channel outlet 
NB non-Boussines~~ 
m mean 
XX! channel inlet 
0 wall 

ip inlet plenum. 

the cross-sectional mean velocity is invariant along 
the channel. 

Application of the boundary layer equations 
implies thermal diffusion in the flow direction can be 
neglected. Ramanathan and Kumar [I] show that the 
effects from vertical diffusion are insignificant for 
Lib 3 15. A recent study of isothermal parallel plates 
[I I]. however. indicates that heat conduction out the 
channel inlet may become important at low Ru. Two 
parameters were used in this study to assess the 
importance of conduction : L/h and f-,&h, where L,, 
is the length of the inlet plenum upstream of the channel. 
As ,!,‘/I ---f x (present case) and L,Jh -+ r~, the effects 
of conduction became insignificant and the results 
asymptotically approached the earlier measurements 
of Elcnbaas [2]. Assuming similar arguments arc 
applicable to uniformly heated plates. the results pre- 
scntcd here may be limited to deep inlet plenmns. 

pcp~( T- T, ) d_r - q” = 0. (3) 

where 1 is half the channel gap width, p is the fluid 
density, u is the local fluid velocity, T and T, are the 
local and channel inlet fluid temperatures, respec- 
tively, cp is the fluid specific heat, T,, is the channel wall 
shear stress and q” is the channel wall heat flux. At 
this point, the governing equations are unconstrained, 

in a boundary layer sense, except for the assumption 
of fully-developed, low velocity flow. 

The integral boundary layer equations arc written 
below in Cartesian coordinates. As shown in Fig. 1. 
the .u-direction is the direction of flow along the channel 
and the_r-direction is the direction normal to the plate. 
The equations for mass. momentum, and energy arc, 
respectively, 

- -7 
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The facility in applying the integral boundary layer 
approach lies in the resulting solution of ordinary 

differential equations as opposed to partial differential 
equations (for a discussion see ref. [12]). This ap- 
proach, however, requires representations for the velo- 
city and temperature distributions and the wall shear 
stress. Indeed, the solution accuracy is dependent 
upon these representations. Langerman and Bayless 
[7] showed that, for laminar, Newtonian flow, 
simple parabolic distributions produced results, for 
low Ru, indistinguishable from those of Aung [3]. 
These distributions are used in this analysis and are 
given here in terms of the mean channel velocity, V, 
the mean channel outlet tenl~rature, r,, and channel 
outlet surface temperature, r,, as 

and 

u = 3V?/(2-q), (4) 

T= r,,+:(r,,-T”,)vlfr-2), 

where rj = vii. 

(5) 

Here, as in most natural circulation analyses, the 
density is cast as a linear function of temperature. in 
doing so. compressibility effects are neglected, which 
is a good approximation for thermally induced natural 
convection problems (see refs. [6, 131). Using a Taylor 
series expansion around some reference value of 7’, 
say F, and neglecting higher-order terms, results in 

p = p[I -_B(T- r)ll (6) 

where p is the coefficient of thermal expansion defined 
LiS 

(7) 

For fluids which approximate ideal gases over a 
limited temperature range (e.g. air between 300 and 
f 100 K), j? = l/p. 

Boussinesq model 
If Tin equation (6) is defined as the average channel 

fluid temperature, F, and assuming the pressure gradient 
is due solely to the weight of the fluid, then equation 
(2) reduces to [7] 

where the tilde signifies average values over the entire 
channel length. Note, the assumption regarding the 
pressure gradient is true, in the strictest sense, only 
under hydrostatic conditions, but is approached 
closely at low velocities and for Ay/p CC 1, or equi- 
valently fl( T- f) c 1, along the channel. This latter 
stipulation, if met, renders the Boussinesq approxi- 
mation valid for the case of air flow (see Gebhart 

f131). 
Remark. In their work, Gray and Giorgini [6] indi- 

cate that p(7’- ?j < IO-’ (with the same constraint 

on the remaining fluid properties) is sufficient for 
Boussinesq flow. Langerman and Bayless [7] relaxed 
this criteria to &iT- 0 < 0.25 in their study of air 
flow. 

Equations (4) and (5) are substituted into equation 

(3) to provide a relationship for the channel outlet 
fluid temperature, r,. Fourier’s law is used to relate 
the surface temperature, 7’,, to the fluid temperature, 

r,,, at the channel outlet. This temperature infor- 
mation is substituted into equation (8) and. after 
rearranging, results in 

where 6 is the non-dimensional temperature defined 
as 8= (To- F)/[y”(h/k)]. It is easily shown, from a 
simple energy balance, that o’is related to the non- 
dimensional channel velocity, V*, as 

fj_!L,! 
5’ 

where 

With equation (1 I) substituted, equation (9) reduces 
to 

For Ra < 100, the constant l/30 in equation (I 2) can 
be neglected and 

I’* = 0.2887J(Rn), (13) 

which is identical to the result reached by Aung [3] 
using the partial differential equations of the boun- 
dary layer. 

It is easily verified that, under low flow and heat 

transfer rates, the Boussinesq approximation is a good 
approximation. Langerman and Bayless [7] showed 
that the above Boussinesq model produced results 
that are in agreement with those of Aung for 
Rn < 100. They went on to show, however, that when 
heat transfer rates are high or channel aspect ratios 
are large, the Boussinesq approximation may break 
down. The following section presents a method for 
calculating the heat transfer for problems where the 
Boussinesq model has questionable applicability. 

Non-Boussinesq (aarinble properties) model 
With relatively high heat fluxes, the temperature 

rise along the channel length may become significant 
and the assumptjon regarding constant properties 
must be reevaluated. Returning to equation (2) with 
the density relationship defined by equation (6) but 
including the pressure and fluid weight terms results 
in 
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where d/?/d.u is an estimate of the pressure gradient 
which. as discussed later. is obtained elsewhere. From 
equation (14), and a rcl~~tionship for viscosity ana- 
logous to that for density, equation (6), an equation 
similar to equation (8) is obtained as 

- (15) 

where ti(r,-- 77) accounts for the change in viscosity 
around ? and essentially admits another ‘body force’ 
like term to the equation of motion. Equation ( IS) is 
an ordinary differential equation in V. This “initial- 
value’ type problem is particularly well suited to higher- 
order solution techniques such as Runge-Kutta. pro- 
vided some estimate of the pressure gradient can bc 
obtained. For convcniencc. equation (15) is cast in 
nol~-dimension~Il form by introducing a non-dimcn- 

sional pressure. $*. and distance. x*, as 

_y* = .y 
L’ 

where p,, is the hydrostatic pressure at .Y. Equation 
( 15) then reduces to 

(17) 

where t$ = I + a( r,, - 7). and 6 = I + $( $-- T,,,). In 
practice. $, 6 -+ I as AX* + 0. The problem described 
by equation (17) is not p_articularly amenable to 
$mensional analysis since Ru and. to a lesser extent, 
Pr are local parameters that vary along the channel. 
Note that the tildes in equations (15j and (17) now 
represent average values along an incremental channel 
length. Also note that, for Boussinesq conditions (i.c. 
dV*/ds* = dF*ld.u* = 0 and $ = I$ -I As* = I), 
equation (17) reduces to equation (12) as expected. 

The solution begins by specifying a channel waJ 
heat @x and mass flow rate. The local values of Pv 
and Ru are determined and equation (17) is integrated 
along an incremental length of the channel as opposed 
to the Boussinesq model, equation (l2), which was 
obtained by integrating along the entire length of the 
channel in one step. The estimated pressure gradient 
is then modified. if necessary, until the resulting mass 
flow rate at the outlet of the incremental channel 
distance equals that at the inlet. thus satisfying con- 

tinuity, equation (1). This procedure is continued 
along the entire channel length at which point the 
outlet pressure, fi*, is compared to the implied null 
boundary condition, fi* = 0. If a significant difference 
results, the calculation is restarted with a newly 
assumed value of the mass flow rate and the loop 
continued until p* < c. where i: is an acceptable 
nutncri~dl measure of zero. 

The pressure convergence rate is strongly influenced 
by the initial estimate of the pressure gradient as well 
as the algorithm for modifying the pressure gradient 
during the iteration process. Discussed below is a 
method used to estimate the initial value of the pres- 
sure gradient term. which, when coupled with the 
subsequent updating algorithm, produces a rapid rate 
of convergence. 

The method is a variation of the one introduced by 
Patankar and Spalding 1141, and later used by Baker 
[15], but with buoyancy terms included. The approach 
is basically an integral approach representing the 
initial estimate of the pressure gradient as 

(18) 

All the inforlnation on the right hand side ofequation 
(18) is available, thus providing a means for obtaining 
a first estimate of the pressure gradient. This estimate 
is then updated using 

where the A( ) correction term will drive the solution 
towards a numerical measure of continuity. From the 
cotltinuity equation and a simplified form of the one- 
dimensional lnon~etlturn equation, it can be shown 
that the correction term takes the form [16], 

A@ = - [2-yg*V*!](F,k), (20) 

where A V* is the difference between V* obtained with 
the known mass flow rate and fluid state changes over 
As* and V* obtained from equation (17). 

NUMERICAL ACCURACY 

The accuracy of the present method has been 
assessed numerically through successive grid 
reductions and conceptually through comparisons 
with model results from Aung er al. [4], and with 
experimental data from Wirtz and Stutzman [S]. This 
latter, conceptual assessment, was made at conditions 
for which the assumption of constant fluid properties 
is warranted. Outside the limits of Boussinesq flow, 
no data or model results were found for comparison, 
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FIG. 2. Average channel Nusselt number. FIG. 3. Channel outlet Nusselt number 

although the results obtained here seem reasonable 
from an engineering judgment point of view. 

A fourth order Runge-Kutta numerical scheme was 
used to solve equation (17). A successive axial grid 
refinement exercise led to the choice of 100 equally 
spaced axial steps. At higher grid refinements, little 
difference in calculated results was realized, however, 
on occasion it was necessary to reduce the space step 
even further to enhance pressure-velocity conver- 
gence. The minimum A.u* required in the calculations 
performed was IO ‘. 

Figure 2 compares the present model results to 
those from Aung rt ul. [3]. The comparison shown is 
for the Nusselt number, Nu, where Nu is defined as 

q”h 
NL1 = (;r, - T, )k' (21) 

In Fig. 2, the average channel Nusselt number, Nu;,,,, 
is presented, consequently T,, in equation (21) was 
evaluated at the channel mid height. For Ru < 100, 
the results from the present model are indis- 
tinguishable from those of Aung. For Rcr > 100, 

hydrodynamic entry length effects begin to become 
important and the results from the present model start 
to deviate from those of Aung. 

Figure 3 compares the channel outlet Nusselt num- 
ber, Nu,, calculated with the present model compared 
with experimental data (Wirtz and Stutzman [5]). 
Again, the analytical results are in good agreement 
with the data for Ra < 100 and tend to over predict 
the data at larger RN. 

NUMERICAL RESULTS 

The fluid considered here is air for 300 ,< T < I 100 
K. The channel aspect ratio, R, was varied from 50 
to 500. The applied heat flux was varied over an order 
of magnitude from 10-l 50 W mm ‘. 

Figure 4 compares Nu, obtained from the Bous- 

sinesq model and the non-Boussinesq model. As indi- 
cated, as Ra decreases, the Boussinesq model soon 
becomes invalid even at relatively low values of chan- 
nel heat flux. Also the results obtained from the non- 
Boussinesq model do not correlate to a single curve 
but are a function of the applied heat flux with a 
higher flux causing, as expected, an earlier departure 
from the Boussinesq curve (as Ra is decreased). Con- 
versely, the non-Boussinesq results approach the 
Boussinesq curve asymptotically with increasing Rn. 

Langerman and Bayless [7] argued that, for air flow 
conditions and T, > 1.25, the Boussinesq model will 
under predict the channel heat transfer rate. This con- 
clusion was based upon examination of the product 
/I( T- F) as the channel heat flux was increased. Recall 
that, for Boussinesq flow conditions, b(T- 7) << I. 

They chose to assign as the limit for this product a 
value of 0.25, which was exceeded for T, > 1.25. As 

ii? 
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lti “,.“d ~,,~,~“’ ‘,,,,l”l ‘,,,,,.’ ‘-I ‘,d ‘,‘l,,,J ‘,,‘,,‘J - 

FIG. 4. Channel outlet Nusselt number, Boussinesq and non- 
Boussinesq models. 



3434 M. A. LASERMAN 

will be shown, results presented here are in agreement 
with their result. 

The ratio of non-Boussinesq to Boussinesq output 
was found to be a convenient format for assessing the 
calculated results. It was determined that these ratios 
correlate to a group of non-dimensional parameters 
evaluated at ambient conditions and using a charac- 
teristic dimension equal to the overall channel length. 
Specifying this group as A. then 

where 5’ is the ratio of channel length to unit depth. 
It is not surprising that Gr, Fu, and Rr occur in 
equation (22) since these numbers result directly from 
a non-dimensional analysis of the Navier-Stokes 
equations. It can be shown that this group of three 
non-dimensional numbers is equivalent to a non- 
dimensional heat Rux, 0. defined as 

Hence. 

(23) 

(24) 

Equation (24) provides a more intuitive approach to 
evaluating the calculated results. 

For example, Fig. 5 shows the ratio of the mass 
flow rates vs A obtained at q” = 10, and 150 W m-l. 
At A z 7.5 x IO’, the non-Boussinesq model begins to 
calculate a higher flow rate and by A z IO”, the flow 
rate calculated with non-Boussinesq model is ap- 
proximately 20% higher than that calculated with the 
Boussinesq model. Similarly. the ratio of the outlet 
Nusselt numbers shown in Fig. 6 begins to reflect a 
higher heat transfer rate obtained with the non- 

FIG. 5. Ratio of the calculated mass flow rates. T, = 300 K. 

2.5 1 1 

0s I ’ ’ L 

0 4000 nm 15m 

A 

FIG. 6. Ratio of the calculated Nusselt numbers. T, = 
300 K. 

Boussinesq model for A > 7.5 x IO’, but the difference 
is not significant until A 3 10“. As indicated in 
Fig. 7, at A = IO4 the temperature ratio, T, is ap- 
proximately 1.25 which agrees with the result of 
Langerman and Bayless [7] cited earlier. 

The results shown in F‘igs. 557 indicate that, for 
A 3 IO“. the Boussinesq model will under predict the 
channel heat flux. Figure 8 presents a plot of equation 
(24) for A = 10’ and, given a channel aspect ratio, 
R/S, indicates the limiting value of @ for which the 
Boussinesq model is appropriate. 

The curves presented in Figs. 5-8 may be used to 
calculate specific heat transfer results for air flow 
problems that fall within the limits of the data 
presented. For example, to determine Nu, given 
R=215. S= I, q”= 150 W mm~‘and T, =300 K 
(k = 0.026 W m ’ Km ‘), first calculate A from equa- 
tions (23) and (24) as 

1.75 

1.50 

b=le! 

1.25 

IX@ 

FG. 7. Temperature ratio, T, = 300 K. 
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FIG. 8. Non-dimensional heat flux vs aspect ratio. 

A= J( 30$&$215’) % 1.40x IO4 > 10J. 

T,, from Fig. 7 is estimated to be 

7-R z I.35 
6. 

from which 7. 

T 
TR 7-x 

m.L = 2 - TK 
- 623 K. 

At 623 K, k z 0.045 W mm- ’ K ‘, then from Fourier’s 
law and equation (5), 

r,,., - T,,.L = q”(b/k)/5 2 3 K 

SO 

T o.L z 626 K. 

NuNH from equation (21) and T,,,L = 626 K is 

Nu ‘50(‘/2’5) = 4.76,/ 10-3 ~ -~ 
‘” = 326(0.045) 

which is within 2% of4.66 x IO- ‘, the Nu,,calculated 
with the model described in the previous sections. 

Similarly, if q” is sought given T,,,,, T,, R and S, 
then the procedure is the same, however, in this case, 
q” is assumed and the resulting T,,L is compared with 
the known value. If a significant difference exists, the 
assumed value of y” is modified and the procedure 
repeated. 

CONCLUSIONS 

A non-Boussinesq integral method for laminar free 
convection between vertical flat plates subject to a 
uniform, symmetric wall heat flux has been developed 
in this study. Numerical solutions to the two-dimen- 
sional integral boundary layer equations have been 
obtained, and, as Ra increases, have been shown to 
asymptotically approach the closed form solution for 
fully developed Boussinesq few. It has been shown 

that for air flow, a A > IO’ results in non-Boussinesq 
flow conditions, where A is a non-dimensional para- 
metric combination of the applied wall heat flux and 
the channel aspect ratio. 
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